Select Page

China Standard CZPT Tunland Car Engine Isf2.8 Engine Driven Pulley for CZPT Isf2.8 Engine Spare Parts double pulley

Product Description

CHINAMFG Tunland car engine ISF2.8 engine driven pulley for CHINAMFG ISF2.8 engine spare parts 
 

Product name driven pulley for CHINAMFG ISF2.8
Model  
OEM 5272961
Application Cummins ISF2.8 diesel engine
MOQ 2 pcs
Package carton box or wooden box, packed by pallet
Leading time depends on stock quantity and order quantity
Shipping terms EXW, FOB, CIF, etc.
Port HangZhou port, ZheJiang port
Payment T/T (wire transfer), western union, L/C, etc.
Warranty 12 month

What products we can supply to customers : 

1) Cylinder head, cylinder head assembly, cylinder block, crankshaft for : Toyota, VW, Mitsubishi, Hyundai, KIA, ISUZU, Ford, Nissan, Mazda, Cummins, Great Wall, CAT, HINO, Komatsu, Kubota, etc. 

2) Engine long block / bare engine, engine short block for : Toyota, CHINAMFG / KIA, Cummins, Great Wall, Haval, Mitsubishi, etc. 

3) Full series of engine spare parts for some models: such as 4Y, ISF2.8, ISF3.8, GW4D20, GW4G15, GW2.8, etc. 

Related engine parts we can supply: 

Cylinder head series:

Cylinder head for the following car engines:

Cylinder head for VW/Audi/Skoda: CAYA, CAYB, CAYC, CAYD, CAYE, ADR, AMK, AMU, ANB, AAB, BLR, BLX, BLY, BVX, BVY, AXX, BPG, BWA, CAAA, CAAB, CAAC, CCHB, CDBA, CDCA, CKTB, CFCA, AZV, BKD, AXD, AXE, BAC, etc.

Cylinder head for Toyota: 1KD-FTV, 2KD-FTV, 3C-TE, 2C-TE, 1C, 1NZ/2NZ, 1AZ, 2AZ, 1KZ-T, 1KZ-TE, 1ZZ, 2ZZ, 2E, 3Y, 4Y, 2L, 2LT, 3L, 5L, 1DZ, 2L2, 1Z/2Z, 1HZ, 1HD, 14B, 22R,2TR, 1KD, 2KD, 1RZ/2RZ, etc.  

Cylinder head for CHINAMFG & KIA: G4EK, G4EE, G4ED, G4EC, G4GC, G4HG, G4EA, D4EA, D4FA, D4EB, D4CB, 4D56, D4BH, D4BA, 4D56T, D4BF, JT, F8, J2, etc.

Cylinder head for ISUZU: 4JG2, 4HK1, 4HE1, 4HF1, 4HG1, 6HK1, 4BA1, 4BD1, 4BD2, 4BE1, 3LD1, 6SD1, C240, G16B, 4JJ1, 4JX1, 4ZD1, 4ZE1, etc.  

Cylinder head for Mitsubishi: 4D30/4D36, 4M40, 4M40T, 4M41, 6D14, 6D15, 6D16, 6D17, 4DR5, 4DR7, S4S, 4D56, 4D56U, D4BH, D4BA, 4D56T, 4D55T, D4BF, 4M42, 4G64, 4G63, etc.

Cylinder head for Mazda: WL, WLT, R2, RF, WE, WLAT, NA, F8, FE

Cylinder head for Nissan: TD23, TD25, TD27, TD42, QD32, SD25, BD25, BD30, KA24, YD25, Z24, ZD30, H20-2, YD22, QR20, QR25, K21, K25, ZD3200, ZD3202, etc.

Cylinder head for Ford: WL, WL-T, WE, WLAT, R2, RF, Transit 2.4, 4D56, DV, HHDB, D4BH, P8FA, QVFA, 4D55, P4AT, DDR5, CYRA, etc.

Cylinder head for HINO: J08C/J08E, J05E, J05C, N04C, W04C/W04D, E13C, P11C, EB300, EH700, etc.

Cylinder head for DEUTZ: 30D, 52D, 56D, 65D, 1015, 226B, etc.

Cylinder head for Kubota: V1505, V2203/V2403, V1702/V1902, V3300, D1005/D1105/D1100/D1102, D722/D782/D850/D902/D905, D1302/D1402/D1403, Z750, D1703/D1503

Cylinder head for Komatsu: S6K, 4D95, 4D95S/L, 6D95, 6D125, etc.

Cylinder head for CAT: C12,C13, C15, 1N4304, etc.

Cylinder head for Cummins: ISF2.8, ISF3.8, 4BT, 6BT, 6CT, K19, etc.

Cylinder block, short block, engine long block/bare engine for the following models:

For CHINAMFG Cummins: ISF2.8, ISF3.8, 4BT, 6BT, etc. 

For Great Wall: GW4D20, GW4D20B, GW4G15, GW4G15B/T, GW2.8TC, GW2.8TDI, GWTDI-2, GW2.8TC-2, CA4D28C4-1A, etc.

For CHINAMFG series: 4Y, 3Y, 1AZ, 2AZ, 3GR, 5GR, 2TR, 1ZR, 2ZR, 2L, 3L, 5L, etc.  

For Hyundai/KIA series: G4FA, G4FC, G4FD, G4FG, G4FJ, G4LC, G4NA, G4NB, G4KA, G4KC, G4KD, G4KE, G4KJ, G4KH, D4CB, 

For CHINAMFG series: 4A91, 4A92, 4A91T, 4G43T, 4G64, 4G69, etc. 

For JAC car series: 4GB1, 4GB2, 4GB3, 4GA1, 4GA3, 4DA1, etc. 

For VW car series: EA111, EA888, etc. 

For CHINAMFG series: 4JB1, 4HF1, 4HG1, 4HK1, 4HE1, 4JJ1,  etc. 

Our advantage: 

1) Engine long block are assembed by brand new original engine spare parts.
2) Long warranty period for products, warranty for 12 month.
3) Rich experience on engine parts industry, has a wide and complete supply chain. 

Package and delivery: 

Package by wooden box or carton box according to different models, delivery can be made by seaway, railway by FOB, CFR, CIF terms, etc. 

FAQ: 

Q: What is your business scope? 
A: We have a wide business scope, include bare cylinder head (some models has complete cylinder head), bare cylinder block, engine long block, crankshaft, engine short block, etc. Our engine long block is assembled by original brand new spare parts, with a high quality and long warranty period. We also can supply complete engine for such models, and also can supply full series of engine spare parts for some models. 

Q: What is your payment terms?
A: Payment can be made by T/T(wire transfer), L/C, Western Union, etc. Depends on different order amount, usually 30% to 50% deposit before production, balance to be payed before shipment. Payment terms is negotiable. 

Q: What is the package? 
A: According to different model’s weight, goods will be packed by wooden box or cartoon box, all goods will be packed by pallet before shipment. 

Q: What is warranty period? 
A: Warranty period for 12 month after goods sold out. 

Q: What is the leading time? 
A: Leading time need to be confirmed by exact model and quantity. 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CCC, ISO9001
Standard Component: Standard Component
Technics: Casting
Material: Driven Gear
Type: Driven Gear
Transport Package: Carton Box
Customization:
Available

|

Customized Request

gear pulley

What is the significance of proper alignment in gear pulley systems?

Proper alignment in gear pulley systems is of significant importance for ensuring optimal performance, efficiency, and longevity of the system. Here’s a detailed explanation of the significance of proper alignment in gear pulley systems:

1. Efficient Power Transmission:

Proper alignment ensures that the gears and pulleys engage correctly, resulting in efficient power transmission. Misalignment can cause excessive friction, energy loss, and premature wear of components. When the gears and pulleys are properly aligned, the force is evenly distributed across the teeth and surfaces, minimizing energy losses and maximizing the transfer of rotational power from the driving gear to the driven gear or pulley.

2. Smooth Operation:

Alignment plays a crucial role in achieving smooth and vibration-free operation of gear pulley systems. Misalignment can lead to uneven forces and vibrations, causing noise, increased wear, and reduced system stability. Proper alignment ensures that the gears and pulleys rotate without excessive axial or radial movement, resulting in smooth and reliable operation.

3. Extended Component Life:

Proper alignment helps prolong the life of gears, pulleys, bearings, and other components in the system. Misalignment can create excessive stresses on the teeth, shafts, and bearings, leading to premature wear, pitting, or failure. By ensuring proper alignment, the load is evenly distributed, reducing stress concentrations and promoting longer component life.

4. Accurate Speed and Torque Transmission:

In gear pulley systems, accurate speed and torque transmission are crucial for achieving the desired performance. Misalignment can cause deviations in rotational speed and torque, leading to inaccurate operation and reduced system performance. Proper alignment ensures that the gears and pulleys maintain the intended contact and engagement, resulting in accurate speed and torque transmission.

5. Reduced Energy Consumption:

Misalignment in gear pulley systems can result in increased energy consumption. The inefficiencies caused by misalignment, such as friction and energy losses, require the system to consume more power to achieve the desired output. Proper alignment minimizes these inefficiencies, reducing energy consumption and improving overall system efficiency.

6. Preventive Maintenance:

Proper alignment is essential for preventive maintenance practices. Regular inspection and adjustment of alignment help identify and correct any misalignment issues before they lead to significant damage or system failure. By proactively maintaining proper alignment, potential problems can be addressed early, reducing downtime and repair costs.

7. Safety:

Proper alignment contributes to the safety of gear pulley systems. Misalignment can create unexpected forces, vibrations, or sudden movements, posing safety risks to operators and surrounding equipment. Properly aligned systems operate predictably and reliably, minimizing the risk of accidents or damage.

In summary, proper alignment in gear pulley systems is crucial for efficient power transmission, smooth operation, extended component life, accurate speed and torque transmission, reduced energy consumption, preventive maintenance, and safety. Regular inspection and adjustment of alignment are necessary to ensure optimal performance and reliability of gear pulley systems.

gear pulley

How does the gear ratio in a gear pulley affect its performance?

The gear ratio in a gear pulley has a significant impact on its performance, influencing various aspects such as speed, torque, and power transmission. Here’s a detailed explanation of how the gear ratio affects the performance of a gear pulley:

Gear Ratio Basics:

The gear ratio represents the relationship between the number of teeth on the driving gear and the number of teeth on the driven gear. It determines how many times the driving gear must rotate to make the driven gear complete one revolution. The gear ratio is typically expressed as a numerical ratio or as a fraction.

Speed:

The gear ratio directly affects the speed of the driven gear relative to the driving gear. A gear pulley with a higher gear ratio, where the driving gear has more teeth than the driven gear, will result in a lower speed at the driven gear. Conversely, a gear pulley with a lower gear ratio, where the driven gear has more teeth, will result in a higher speed at the driven gear. Therefore, the gear ratio determines the speed reduction or amplification between the driving and driven gears.

Torque:

The gear ratio also influences the torque at the driven gear. Torque is a rotational force that determines the system’s ability to overcome resistance or to perform work. A gear pulley with a higher gear ratio, where the driving gear has more teeth, will result in a torque amplification at the driven gear. This means that the driven gear can exert greater force or torque on the load or system it is connected to. Conversely, a gear pulley with a lower gear ratio, where the driven gear has more teeth, will result in a torque reduction at the driven gear. In this case, the driven gear will exert less force or torque, but it will be able to rotate at a higher speed.

Power Transmission:

The gear ratio affects the power transmission capabilities of the gear pulley system. Power is the rate at which work is done or energy is transferred. The gear ratio determines how the power is distributed between the driving and driven gears. In a gear pulley system, the power is equal to the product of torque and rotational speed. A higher gear ratio will result in a higher torque at the driven gear, allowing it to transmit more power to the connected system. Conversely, a lower gear ratio will result in a higher speed at the driven gear, enabling it to transmit power at a faster rate.

Mechanical Advantage:

The gear ratio provides mechanical advantage in a gear pulley system. Mechanical advantage refers to the ability of a system to amplify force or torque. A gear pulley with a higher gear ratio provides a greater mechanical advantage, allowing it to handle heavier loads or perform tasks that require more force. On the other hand, a gear pulley with a lower gear ratio provides a lower mechanical advantage but allows for higher speeds and faster operation.

Efficiency:

The gear ratio can also impact the overall efficiency of the gear pulley system. In general, gear systems with higher gear ratios tend to have lower efficiency due to increased friction and power losses. The additional teeth in the gear train result in more contact points and increased surface area, leading to higher friction losses. Therefore, it is important to consider the trade-off between speed, torque, and efficiency when selecting the gear ratio for a specific application.

Overall, the gear ratio in a gear pulley significantly affects its performance, including speed, torque, power transmission, mechanical advantage, and efficiency. By selecting the appropriate gear ratio, engineers and designers can optimize the gear pulley system for specific applications, ensuring the desired balance between speed, torque, and efficiency based on the requirements of the machinery or system.

gear pulley

What are the advantages of using gear pulleys in various systems?

Gear pulleys offer several advantages when used in various systems. Here’s a detailed explanation of the advantages of using gear pulleys:

  • Efficient Power Transmission: Gear pulleys provide efficient power transmission between rotating shafts. They minimize energy losses by reducing friction and slippage, ensuring that a large portion of the input power is effectively transferred to the driven components. This efficiency is crucial in applications where maximizing power transfer is essential, such as in industrial machinery, automotive systems, and power generation equipment.
  • Speed Control: Gear pulleys allow for precise speed control in power transmission systems. By varying the sizes of the gears or pulleys, the rotational speed of the driven component can be adjusted relative to the input speed. This speed control capability is valuable in applications where different components within a system require specific rotational speeds, such as in conveyor systems, machining equipment, and automotive transmissions.
  • Torque Conversion: Gear pulleys assist in torque conversion during power transmission. By utilizing gears or pulleys with different sizes or numbers of teeth, gear pulleys can change the torque applied to the driven component. This torque conversion capability allows for the adaptation of power output to the requirements of the driven component. It is particularly beneficial in applications where precise torque delivery is crucial, such as in robotics, lifting systems, and heavy machinery.
  • Direction Control: Gear pulleys enable precise control over the direction of rotational motion in power transmission systems. By combining gears or pulleys in specific arrangements, the direction of rotation can be changed as needed. This direction control capability is advantageous in applications where components require bidirectional movement or when the power source needs to be synchronized with the driven component, such as in automotive steering systems, robotics, and conveyor systems with reversing functionality.
  • Compact Design: Gear pulleys allow for the design of compact power transmission systems. They can transmit power over relatively short distances while maintaining a small form factor. This compactness is advantageous in applications where space is limited, such as in compact machinery, automotive drivetrains, and portable equipment.
  • Load Distribution: Gear pulleys help distribute mechanical loads across multiple components within a system. By incorporating multiple gears or pulleys, power can be split and transmitted to several output shafts. This load distribution capability is beneficial in applications where power needs to be shared or when simultaneous operation of multiple components is required, such as in printing presses, conveyor systems with multiple branches, and complex mechanical systems.
  • Mechanical Advantage: Gear pulleys provide mechanical advantage in power transmission systems. The mechanical advantage is the ratio of output force (torque) to input force (torque). By utilizing gears or pulleys with different sizes, gear pulleys can amplify or reduce the mechanical advantage. This allows for the adaptation of power transmission to match the specific requirements of the driven component. Gear pulleys enable the transmission of high torque at low speeds or low torque at high speeds, depending on the mechanical advantage needed.
  • Durability and Reliability: Gear pulleys are known for their durability and reliability. They are designed to withstand high loads, resist wear, and operate smoothly over extended periods. Gear pulleys are commonly made from robust materials such as steel or hardened alloys, ensuring their longevity and ability to handle demanding applications. This durability and reliability are crucial in industries where continuous operation and minimal downtime are essential, such as in manufacturing, automotive, and heavy machinery.

These advantages make gear pulleys highly valuable in various systems across industries. Whether it’s for efficient power transmission, precise speed and torque control, compact design, load distribution, or reliable operation, gear pulleys offer versatile solutions to meet the diverse needs of mechanical systems.

China Standard CZPT Tunland Car Engine Isf2.8 Engine Driven Pulley for CZPT Isf2.8 Engine Spare Parts   double pulley	China Standard CZPT Tunland Car Engine Isf2.8 Engine Driven Pulley for CZPT Isf2.8 Engine Spare Parts   double pulley
editor by CX

2024-04-16

gear pulley

As one of leading gear pulley manufacturers, suppliers and exporters of products, We offer gear pulley and many other products.

Please contact us for details.

Mail:gear-pulley.com

Manufacturer supplier exporter of gear pulley

Recent Posts